Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S6+) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle. Our model predicts that as much as 1 wt.% of the total dissolved sulfur in slab-derived fluids reacting with mantle rocks is present as the trisulfur radical ion, S3–. This sulfur ligand stabilizes the aqueous Au(HS)S3– complex, which can transport Au concentrations of several grams per cubic meter of fluid. Such concentrations are more than three orders of magnitude higher than the average abundance of Au in the mantle. Our data thus demonstrate that an aqueous fluid phase can extract 10 to 100 times more Au than in a fluid-absent rock-melt system during mantle partial melting at redox conditions close to the sulfide-sulfate boundary. We conclude that oxidation by slab-derived fluids is the primary cause of Au mobility and enrichment in the mantle wedge and that aqueous fluid-assisted mantle melting is a prerequisite for formation of Au-rich magmatic hydrothermal and orogenic gold systems in subduction zone settings.more » « lessFree, publicly-accessible full text available December 19, 2025
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically‐modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to obliquity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reducedpCO2and dissolved inorganic carbon δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3preservation in the model is enhanced during eccentricity modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.more » « less
-
Science, technology, engineering, and mathematics (STEM) education initiatives in higher education increasingly call for career mentorship opportunities for underrepresented minorities (URM). Researchers (Johnson & Sheppard, 2004; Nelson & Brammer, 2010) note the importance of having faculty to mentor and act as role models for students, often assuming that mentors play a stronger role if they are also from the same cultural background. Native American (NA) faculty members are underrepresented in most fields in colleges and universities, and exceedingly so in engineering. Only 0.2% (N=68) of engineering faculty nationwide identify as Native American (Yoder, 2014). Likewise, NA students are underrepresented in undergraduate (0.6%; N=1853) and graduate (0.1%; N=173) engineering programs. The low percentage in graduate school is of even greater concern as they represent the primary potential pool of new faculty members. Advising and mentorship from those who identify as NA are often considered important components recruiting and retention in STEM fields. For example, Smith and colleagues (2014) found that factors such as communal goal orientation influenced NA engineering students’ motivation and academic performance. However, very few studies account for differences in NA identity or provide a nuanced account of successful NA STEM professional experiences (Page-Reeves et al., 2018). This research paper presents findings from an exploratory study aimed at pinpointing the factors that influence NA entry and persistence in engineering faculty positions.more » « less
-
Subduction zones represent the interface between Earth’s interior (crust and mantle) and exterior (atmosphere and oceans), where carbon and other volatile elements are actively cycled between Earth reservoirs by plate tectonics. Helium is a sensitive tracer of volatile sources and can be used to deconvolute mantle and crustal sources in arcs; however it is not thought to be recycled into the mantle by subduction processes. In contrast, carbon is readily recycled, mostly in the form of carbon-rich sediments, and can thus be used to understand volatile delivery via subduction. Further, carbon is chemically-reactive and isotope fractionation can be used to determine the main processes controlling volatile movements within arc systems. Here, we report helium isotope and abundance data for 42 deeply-sourced fluid and gas samples from the Central Volcanic Zone (CVZ) and Southern Volcanic Zone (SVZ) of the Andean Convergent Margin (ACM). Data are used to assess the influence of subduction parameters (e.g., crustal thickness, subduction inputs, and convergence rate) on the composition of volatiles in surface volcanic fluid and gas emissions. He isotopes from the CVZ backarc range from 0.1 to 2.6 R A ( n = 23), with the highest values in the Puna and the lowest in the Sub-Andean foreland fold-and-thrust belt. Atmosphere-corrected He isotopes from the SVZ range from 0.7 to 5.0 R A ( n = 19). Taken together, these data reveal a clear southeastward increase in 3 He/ 4 He, with the highest values (in the SVZ) falling below the nominal range associated with pure upper mantle helium (8 ± 1 R A ), approaching the mean He isotope value for arc gases of (5.4 ± 1.9 R A ). Notably, the lowest values are found in the CVZ, suggesting more significant crustal inputs (i.e., assimilation of 4 He) to the helium budget. The crustal thickness in the CVZ (up to 70 km) is significantly larger than in the SVZ, where it is just ∼40 km. We suggest that crustal thickness exerts a primary control on the extent of fluid-crust interaction, as helium and other volatiles rise through the upper plate in the ACM. We also report carbon isotopes from ( n = 11) sites in the CVZ, where δ 13 C varies between −15.3‰ and −1.2‰ [vs. Vienna Pee Dee Belemnite (VPDB)] and CO 2 / 3 He values that vary by over two orders of magnitude (6.9 × 10 8 –1.7 × 10 11 ). In the SVZ, carbon isotope ratios are also reported from ( n = 13) sites and vary between −17.2‰ and −4.1‰. CO 2 / 3 He values vary by over four orders of magnitude (4.7 × 10 7 –1.7 × 10 12 ). Low δ 13 C and CO 2 / 3 He values are consistent with CO 2 removal (e.g., calcite precipitation and gas dissolution) in shallow hydrothermal systems. Carbon isotope fractionation modeling suggests that calcite precipitation occurs at temperatures coincident with the upper temperature limit for life (122°C), suggesting that biology may play a role in C-He systematics of arc-related volcanic fluid and gas emissions.more » « less
-
Abstract The healthy herds hypothesis proposes that predators can reduce parasite prevalence and thereby increase the density of their prey. However, evidence for such predator‐driven reductions in the prevalence of prey remains mixed. Furthermore, even less evidence supports increases in prey density during epidemics. Here, we used a planktonic predator–prey–parasite system to experimentally test the healthy herds hypothesis. We manipulated density of a predator (the phantom midge,Chaoborus punctipennis) and parasitism (the virulent fungusMetschnikowia bicuspidata) in experimental assemblages. Because we know natural populations of the prey (Daphnia dentifera) vary in susceptibility to both predator and parasite, we stocked experimental populations with nine genotypes spanning a broad range of susceptibility to both enemies. Predation significantly reduced infection prevalence, eliminating infection at the highest predation level. However, lower parasitism did not increase densities of prey; instead, prey density decreased substantially at the highest predation levels (a major density cost of healthy herds predation). This density result was predicted by a model parameterized for this system. The model specifies three conditions for predation to increase prey density during epidemics: (i) predators selectively feed on infected prey, (ii) consumed infected prey release fewer infectious propagules than unconsumed prey, and (iii) sufficiently low infection prevalence. While the system satisfied the first two conditions, prevalence remained too high to see an increase in prey density with predation. Low prey densities caused by high predation drove increases in algal resources of the prey, fueling greater reproduction, indicating that consumer–resource interactions can complicate predator–prey–parasite dynamics. Overall, in our experiment, predation reduced the prevalence of a virulent parasite but, at the highest levels, also reduced prey density. Hence, while healthy herds predation is possible under some conditions, our empirical results make it clear that the manipulation of predators to reduce parasite prevalence may harm prey density.more » « less
-
We studied Native American college students’ perceptions of educational barriers and supports while pursuing degrees leading to careers in engineering. Based on findings from our qualitative study, we provide recommendations for students, professors, departments, and institutions on how to support Native American students to be successful as they pursue careers in science, math, and engineering careers.more » « less
-
Melt acidolysis polymerization of hydroquinone with a kinked monomer, biphenyl 3,4′-bibenzoate, afforded a novel liquid crystalline polymer (LCP), poly( p -phenylene 3,4′-bibenzoate) (poly(HQ-3,4′BB)). Selection of hydroquinone diacetate (HQ a ) or hydroquinone dipivilate (HQ p ) facilitated either a tan or white final polymer, respectively. 1 H NMR spectroscopy confirmed consistent polymer backbone structure for polymers synthesized with either derivative of hydroquinone. Poly(HQ-3,4′BB) exhibited the onset of weight loss at about 480 °C, similar to commercially available Vectra® LCP. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) revealed a glass transition temperature ( T g ) of 190 °C and an isotropic temperature ( T i ) near 330 °C. The observation of a melting temperature ( T m ) depended upon the thermal history of the polymer. Wide-angle X-ray scattering (WAXS) and polarized optical microscopy (POM) confirmed the formation of a nematic glass morphology after quench-cooling from the isotropic state. Subsequent annealing at 280 °C or mechanical deformation induced crystallization of the polymer. Rheological studies demonstrated similar shear thinning behavior for poly(HQ-3,4′BB) and Vectra® RD501 in the power law region at 340 °C. Zero-shear viscosity measurements indicated that HQ a afforded higher melt viscosities after identical polymerization conditions relative to HQ p , suggesting higher molecular weights.more » « less
-
Abstract Our understanding of the long‐term evolution of the Earth system is based on the assumption that terrestrial weathering rates should respond to, and hence help regulate, atmospheric CO2and climate. Increased terrestrial weathering requires increased carbonate accumulation in marine sediments, which in turn is expected to result in a long‐term deepening of the carbonate compensation depth (CCD). Here, we critically assess this long‐term relationship between climate and carbon cycling. We generate a record of marine deep‐sea carbonate abundance from selected late Paleocene through early Eocene time slices to reconstruct the position of the CCD. Although our data set allows for a modest CCD deepening, we find no statistically significant change in the CCD despite >3 °C global warming, highlighting the need for additional deep‐sea constraints on carbonate accumulation. Using an Earth system model, we show that the impact of warming and increased weathering on the CCD can be obscured by the opposing influences of ocean circulation patterns and sedimentary respiration of organic matter. From our data synthesis and modeling, we suggest that observations of warming, declining δ13C and a relatively stable CCD can be broadly reproduced by mid‐Paleogene increases in volcanic CO2outgassing and weathering. However, remaining data‐model discrepancies hint at missing processes in our model, most likely involving the preservation and burial of organic carbon. Our finding of a decoupling between the CCD and global marine carbonate burial rates means that considerable care is needed in attempting to use the CCD to directly gauge global carbonate burial rates and hence weathering rates.more » « less
An official website of the United States government

Full Text Available